Bayesian optimization explains human active search
نویسندگان
چکیده
Many real-world problems have complicated objective functions. To optimize such functions, humans utilize sophisticated sequential decision-making strategies. Many optimization algorithms have also been developed for this same purpose, but how do they compare to humans in terms of both performance and behavior? We try to unravel the general underlying algorithm people may be using while searching for the maximum of an invisible 1D function. Subjects click on a blank screen and are shown the ordinate of the function at each clicked abscissa location. Their task is to find the function’s maximum in as few clicks as possible. Subjects win if they get close enough to the maximum location. Analysis over 23 non-maths undergraduates, optimizing 25 functions from different families, shows that humans outperform 24 well-known optimization algorithms. Bayesian Optimization based on Gaussian Processes, which exploits all the x values tried and all the f(x) values obtained so far to pick the next x, predicts human performance and searched locations better. In 6 follow-up controlled experiments over 76 subjects, covering interpolation, extrapolation, and optimization tasks, we further confirm that Gaussian Processes provide a general and unified theoretical account to explain passive and active function learning and search in humans.
منابع مشابه
Supplement to “ Bayesian optimization explains human active search ” NIPS 2013 [ 1 ]
Figure 1: Illustration of stimuli used during test trials. Functions are reconstructed from human clicked locations. F18 is the Dirac function with a non-zero element at-270.
متن کاملActive Contextual Entropy Search
Contextual policy search allows adapting robotic movement primitives to different situations. For instance, a locomotion primitive might be adapted to different terrain inclinations or desired walking speeds. Such an adaptation is often achievable by modifying a small number of hyperparameters. However, learning, when performed on real robotic systems, is typically restricted to a small number ...
متن کاملNear-Optimal Bayesian Active Learning with Noisy Observations
We tackle the fundamental problem of Bayesian active learning with noise, where we need to adaptively select from a number of expensive tests in order to identify an unknown hypothesis sampled from a known prior distribution. In the case of noise–free observations, a greedy algorithm called generalized binary search (GBS) is known to perform near–optimally. We show that if the observations are ...
متن کاملBayesian optimization for automated model selection
Despite the success of kernel-based nonparametric methods, kernel selection still requires considerable expertise, and is often described as a “black art.” We present a sophisticated method for automatically searching for an appropriate kernel from an infinite space of potential choices. Previous efforts in this direction have focused on traversing a kernel grammar, only examining the data via ...
متن کاملRobust optimization of SVM hyperparameters in the classification of bioactive compounds
BACKGROUND Support Vector Machine has become one of the most popular machine learning tools used in virtual screening campaigns aimed at finding new drug candidates. Although it can be extremely effective in finding new potentially active compounds, its application requires the optimization of the hyperparameters with which the assessment is being run, particularly the C and [Formula: see text]...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013